Vernon Primary School

Calculation Policy

Rationale and Aims

This policy outlines both the mental and written methods that should be taught from Year 1 to Year 6. It is designed to give pupils a consistent and smooth progression of learning when using the four operations. It has been put in place to ensure that all children have the same experience in their learning of calculations across the school. Children should have the opportunity to explore the different methods at a time in their learning suitable to them. All members of staff will follow the progression in calculations to maintain a consistent approach across Mathematics teaching. This will enable all children to progress well and build upon their confidence in calculating to become successful Mathematicians.

This policy breaks down the progression for the four operations addition, subtraction, multiplication and division. These are flexible in when they should be introduced. Teaching should be pitched at a level appropriate to the individual class and child. This means that in some instances it will be required for Teachers to look further on for next steps and equally to consider previous stages to ensure that each child makes progress.

The Maths Curriculum emphasises the need for formal methods of calculation. At Vernon Primary, we believe that children should be introduced to this when they are ready and have a secure understanding of number. It is of primary importance that the children achieve the correct answer using a method they fully comprehend, rather than taking steps in a process with no understanding. The CPA approach (concrete-pictorial-abstract) is one that is widely recognised as supporting children in developing a deep and sustainable understanding of Mathematics. This is something we promote at Vernon Primary in supporting children in learning new concepts.

Alongside written methods, children should secure mental strategies. When calculating children should decide which strategy they should use. Children should explain and reason as to why they have chosen a strategy and whether it is the most efficient.

Through this policy, we aim:

- To support greater consistency in the teaching of written calculations across the school.
- To strengthen continuity and progression in children's understanding of the development of written calculations.
- To form a core set of methods which every child will experience and build upon.
- To build on models and images introduced to promote conceptual understanding.
- To provide reference and guidance on the teaching of calculations skills for teaching staff, teaching assistants and parents.

Addition

Calculation progression through the primary years

	Branches	Milestone 3	Method	Model/Examples
10	Number Bonds	Year 6	Mental methods should continue to develop, supported by a range of models and images, including the number line.	$\begin{aligned} & 57+\Delta=125 \\ & 149+137+158=\Delta \\ & (\Delta+\Delta) \times \Delta=10 \end{aligned}$
	Mental Calculations	perform mental calculations, including with mixed operations and large numbers		
		use their knowledge of the order of operations to carry out calculations involving the four operations	Written methods As year 5, progressing to larger numbers, aiming for both conceptual understanding and procedural fluency with columnar method to be secured. Continue calculating with decimals, including those with different numbers of decimal places	$12462+8456$ Estimate: $\begin{aligned} & 21000=12500+8500 \\ & 12462 \\ & +8456 \\ & \hline 20918 \\ & \hline \end{aligned}$
	Written Methods	Solve problems involving addition and subtraction		
	Inverse operations, estimating and checking answers	use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.	Problem Solving Teachers should ensure that pupils have the opportunity to apply their knowledge in a variety of contexts and problems (exploring cross curricular links) to deepen their understanding.	$\begin{array}{r} 23 \cdot 361 \\ 9 \cdot 080 \\ 59 \cdot 770 \\ +\quad 1 \cdot 300 \\ \hline \end{array}$
4	Problem Solving	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	Adding several numbers with different numbers of decimal places (including money and measures): - Tenths, hundredths and thousandths should be correctly aligned, with the decimal point lined up vertically including in the answer row. - Zeros could be added into any empty decimal places, to show there is no value to add.	

Subtraction

Calculation progression through the primary years

	Branches	Milestone 1	Method	Model/Examples
		Year 2 National Curriculum		
$\begin{aligned} & \mathrm{N} \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	Number Bonds	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100	Missing number problems	$\begin{aligned} & 52-8=\square ; \square-20=25 ; 22=\square-21 ; 6+\square+3 \\ & =11 \end{aligned}$
	Mental Calculations	add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers	It is valuable to use a range of representations (also see Y1). Continue to use number lines to model take-away and difference.	47-23 = 24 Partition the second number and subtract it in tens and units, as bela.
		show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot	The link between the two may be supported by an image like this, with 23 being taken away from 47, leaving the difference, which is 24 .	Move towards more efficient jumps back, as below: Then subtract units
5	Written Methods		Towards written methods	
	Inverse operations, estimating and checking answers	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	Recording addition and subtraction in expanded columns can support understanding of the quantity aspect of place value and prepare for efficient written methods with larger numbers. The numbers may be represented with apparatus. E.g. $89-35=54$	Introduce this method with examples where no exchanging is required.
5	Problem Solving	solve problems with addition and subtraction: * using concrete objects and pictorial representations, including those involving numbers, quantities and measures * applying their increasing knowledge of mental and written methods solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change (copied from Measurement)		$\begin{gathered} 89-35=54 \\ 80+9 \\ \underline{30+5} \\ \underline{50+4} \end{gathered}$

Multiplication

Calculation progression through the primary years

Division

Calculation progression through the primary years

		Milestone 2		
	Branches	Year 3	Method	Models/Examples
(1)	Multiplication and division facts	count from 0 in multiples of 4, 8, 50 and 100 (copied from Number and Place Value	$\div=$ signs and missing numbers Continue using a range of equations as in year 2 but with appropriate numbers.	$\begin{array}{r} 13 \div 3=4 r 1 \\ +3+3+3+3 r 1 \end{array}$
		for the 3,4 and 8 multiplication tables		
	Mental Calculations	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods (appears also in Written Methods)	How many 6's are in 30 ? Becoming more efficient using a numberline Children need to be able to partition the dividend in different	012345678910111213 Step 2 Short division: Limit numbers to NO remainders in the answer OR carried (each digit must be a multiple of the divisor).
	Written Methods	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods (appears also in Mental Methods)	partition the dividend in different ways. Short Division Once children are secure with division as grouping and demonstrate this using number lines, arrays etc., short division for larger 2digit numbers should be introduced, initially with carefully selected examples requiring no calculating of remainders at all. Start by introducing the layout of short division by comparing it to an array	of short division by comparing it to an array.
-	Properties of numbers: Multiples, Factors, Prime, Square, cube numbers			division by comparing it to an array.
	Order of Operations			3's in 90? =
	Inverse operations, estimating and checking answers	estimate the answer to a calculation and use inverse operations to check answers (copied from Addition and Subtraction)	Remainders $49 \div 4=12 r 1$ Sharing - 49 shared between 4. How many left over?	Step 3 Short division: including working with remainders 18
	Problem Solving	solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to mobjects	Grouping - How many 4s make 49. How many are left over? Place value counters can be used to support children apply their knowledge of grouping.	$4 \longdiv { 7 ^ { 3 } 2 }$ $4 \longdiv { 7 5 }$

	Branches	$\begin{gathered} \hline \text { Milestone } \mathbf{2} \\ \hline \text { Year } 4 \end{gathered}$	Method	Models/Examples
	Multiplication and division facts	count in multiples of $6,7,9,25$ and 1000 (copied from Number and Place Value) recall multiplication and division facts for multiplication tables up to 12×12	$\dot{\doteqdot}=$ signs and missing numbers Continue using a range of equations as in year 3 but with appropriate numbers.	Using $\mathrm{x}=$ signs and missing numbers $\begin{array}{lll} \square=60 \div 5 & 36 \div 9=4 & \square=360 \div \\ 90 & \square \div 4=9 & 4=\square \div \end{array}$
	Mental Calculations	use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers recognise and use factor pairs and commutativity in mental calculations (appears also in Properties of Numbers)	Children will continue to explore division as sharing and grouping, and to represent calculations on a number line until they have a secure understanding.	$\begin{aligned} & 54 \div 9=3 \times \square \\ & 36 \div \square=63 \div \Delta \end{aligned}$ Step 1 Division using a number line $53 \div 5=10 r 3$
E	Written Methods	multiply two-digit and three-digit numbers by a one-digit number using formal written layout		Step 2
$\stackrel{1}{8}$	Properties of numbers: Multiples, Factors, Prime, Square, cube numbers	recognise and use factor pairs and commutativity in mental calculations (repeated)	Formal Written Method for Division	Dividend just over 10x the divisor, e.g. $86 \div 6$ 86 $6 \longdiv { 8 6 }$
	Order of Operations		Children should progress in their use of written division calculations (chunking) Calculations should include those with remainders as well as without. As children become more confident they can progress to the written method for dividing a 3 digit number by a 1 digit number, $\mathrm{HTU} \div \mathrm{U}$.	
	Inverse operations, estimating and checking answers	estimate and use inverse operations to check answers to a calculation (copied from Addition and Subtraction)		
	Problem Solving	solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects		Step 3 Move to 3 digit number, $\mathrm{HTU} \div \mathrm{U}$
				$\begin{aligned} & 6 \sqrt{197} \\ & -\frac{180}{017}(30 \times 6) \\ & -\frac{12}{05}(2 \times 6) \end{aligned}$ $32+5$

		Year 5		
\square	Multiplication and division facts	count forwards or backwards in steps of powers of 10 for any given number up to 1000000 (copied from Number and Place Value)	$\dot{\dagger}=$ signs and missing numbers Continue using a range of equations but with appropriate numbers Formal Written Method for Division	Using $\mathrm{x}=$ signs and missing numbers $\begin{aligned} 630 \div \square=9 & \square \div 9=0.7 \\ \square \div \Delta=63 & \Delta \div 90=70 \end{aligned}$
	Mental Calculations	multiply and divide numbers mentally drawing upon known facts		Balanced equations $100 \div 0=\Delta \div 2$
		multiply and divide whole numbers and those involving decimals by 10, 100 and 1000	Continued as shown in Year 4, leading to the efficient use of the	Divide up to 4 digits by a single digit,
		multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers	formal method. Short division with remainders:	including those with remainders. Short division, including remainder
	Written Methods	divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context	Examples that give rise to remainder answers, division often needs to have a real life problem solving context, where pupils	answers: $0663 r 5$
		identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.	consider the meaning of the remainder and how to express it, i.e. as a	8) $5^{5} 3^{5} 0^{2} 9$
	Properties of numbers: Multiples, Factors, Prime,	know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers	fraction, a decimal, or as a rounded number or value,	The answer to $5309 \div 8$ could be expressed as 663 and five eighths, 663 r 5 , as a decimal, or rounded as
	Square, cube numbers	establish whether a number up to 100 is prime and recall prime numbers up to 19	depending upon the context of the problem.	
		recognise and use square numbers and cube numbers, and the notation for squared $\left({ }^{2}\right)$ and cubed $\left({ }^{3}\right)$	Children should progress in their use of written division calculations	$864 \div 36=24$
	Order of Operations		(chunking)	24
-	Inverse operations, estimating and checking answers		As children become more confident with $\mathrm{HTU} \div \mathrm{U}$ they can progress to the written method for dividing a 3 digit	$\begin{array}{rl} 36 & 864 \\ -\frac{720}{144} \end{array}(20 \times 36)$
		solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes	number by a 2 digit number, HTU \div TU	$-\frac{144}{000}(4 \times 36)$
	Problem Solving	solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	Quotients should be expressed as decimals and fractions Children begin to practically develop their understanding of how express the	$\begin{aligned} 716 \div 23= & 31 r^{3}, \\ & 31 \frac{3}{23}, \\ 2 3 \longdiv { 6 7 1 1 6 }, & 31 \cdot 13(24 p) \end{aligned}$
		solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	remainder as a decimal or a fraction. Ensure practical understanding allows children to work through this (e.g. what could I do with this remaining 1 ? How could I share this between 6 as well?)	$\begin{aligned} & -\frac{690}{026}(30 \times 23) \\ & -\quad 23 \\ & -\quad 23 \end{aligned}$

Monitoring and Review:

We are aware of the need to regularly review our policies to take into account the new initiatives, changes in curriculum or developments in technology.

Claire Kitchen

Subject Leader for Mathematics

Policy date - November 2022
Review Date - November 2024
Ratified by Governors - November 2022

